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Abstract

Purpose: Severe adverse events (AEs), such as Guillain-Barré syndrome (GBS) occur

rarely after influenza vaccination. We identify highly associated AEs with GBS and

develop prediction models for GBS using the US Vaccine Adverse Event Reporting

System (VAERS) reports following trivalent influenza vaccination (FLU3).

Methods: This study analyzed 80 059 reports from the US VAERS between 1990

and 2017. Several AEs were identified as highly associated with GBS and were used

to develop the prediction model. Some common and mild AEs that were suspected

to be underreported when GBS occurred simultaneously were removed from the

final model. The analyses were validated using European influenza vaccine AEs data

from EudraVigilance.

Results: Of the 80 059 reports, 1185 (1.5%) were annotated as GBS related. Twenty-

four AEs were identified as having strong association with GBS. The full prediction

model, using age, sex, and all 24 AEs achieved an area under the receiver operating

characteristic (ROC) curve (AUC) of 85.4% (90% CI: [83.8%, 86.9%]). After excluding

the nine (e.g., pruritus, rash, injection site pain) likely underreported AEs, the final

AUC became 77.5% (90% CI: [75.5%, 79.6%]). Two hundred and one (0.25%) reports

were predicted as of high risk of GBS (predicted probability >25%) and 84 actually

developed GBS.

Conclusion: The prediction performance demonstrated the potential of developing

risk-prediction models utilizing the VAERS cohort. Excluding the likely underreported

AEs sacrificed some prediction power but made the model more interpretable and

feasible. The high absolute risk of even a small number of AE combinations suggests

the promise of GBS prediction within the VAERS dataset.
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1 | INTRODUCTION

Vaccination is one of the most effective methods of protecting the
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vaccines, many diseases such as diphtheria, tetanus, Haemophilus

influenzae type b (Hib) disease, poliomyelitis, measles, mumps, con-

genital rubella, and smallpox have been dramatically reduced or even

eradicated worldwide.1 Vaccines, like other biological products can

also cause various side effects. As vaccines are usually administrated

to healthy persons, adverse events (AEs) after vaccination may arouse

suspicion about the safety of the vaccines and cause vaccine hesi-

tancy or refusal in certain populations.2,3 Post-marketing surveillance

is needed in the general population in order to identify and evaluate

AEs for vaccine safety studies.

The Vaccine Adverse Event Reporting System (VAERS) was

established by the Food and Drug Administration (FDA) and the Cen-

ters for Disease Control and Prevention (CDC) to collect reports

about AEs after vaccination. Since its creation in 1990, VAERS has

been used to continually monitor reports following vaccination to

determine whether a vaccine has a higher than expected rate of AEs,4

especially for those rare AEs that are difficult to evaluate in clinical tri-

als during the vaccine development stage.1 Rare AEs of certain vac-

cines (i.e., safety signals) are commonly detected by disproportionality

analysis, which compares their rates with certain background rates.5

These statistically significant signals offer hypotheses that can be fur-

ther studied to assess causality.

Due to the well-known limitations of the spontaneous reporting

data, the use of VAERS data for risk prediction has been limited.

VAERS is also subject to reporting bias, such as underreporting of

AEs, especially for common and mild events.6 In addition, there is no

control group or validation data that would allow a generalizable con-

clusion. As a result, any predictive model should be conducted and

interpreted with caution. There is limited research on risk prediction

using VAERS. One such study is by Pellegrino et al., who systemati-

cally reviewed the pharmacogenetic studies related to VAERS and

provided recognized genetic risk factors.7 In the era of big data,

machine-learning techniques and data-driven methods are being

increasingly applied to medical and healthcare areas8,9 and have

achieved important successes. In the context of vaccine

pharmacovigilance, an applicable risk-prediction model makes early

intervention possible, which could prevent or mitigate some

severe AEs.

In this study, we studied the occurrence of Guillain-Barré syn-

drome (GBS) after influenza vaccination. GBS, an acute immune-

mediated peripheral neuropathy, is suspected as one of the most com-

mon acute paralytic neuromuscular disorders and one of the most

severe AEs following immunization (AEFIs) in adults.10,11 The occur-

rence of GBS among the general population is rare, and estimates of

incidence range from 0.8 to 1.9 cases per 100 000 person-years.12

Influenza vaccines have long been suspected to increase the risk of

GBS. Some studies have found associations between influenza vacci-

nation and GBS,13-15 while other studies have not,16-18 and the asso-

ciation between seasonal influenza vaccine and GBS can vary from

season-to-season.19 Thus, there remains doubt over the causative

nature of the influenza vaccines with GBS.

Despite the effort devoted to studying the association between

the risk of GBS and influenza vaccination, it is important for the public

to know that getting seasonal influenza vaccines is the best way to

prevent flu infection and complications.19 Meanwhile, potential risk

prediction for GBS onset is also critical as it may provide early alerts

to the rare population who might at the risk of getting GBS. Little

research has been conducted to identify the AEs that are related to

GBS among post-vaccination subjects, which can be used to develop

risk-prediction models. It is difficult to accurately diagnose GBS at an

early stage due to its diverse causes and clinical presentations; how-

ever, those patients with a high risk of contracting GBS following

influenza vaccination identified by our model could be more alert to

the fluctuation of symptoms and seek medical treatment before the

possible onset of GBS. The purpose of our investigation is to identify

novel risk factors and generate a novel risk prediction model, which

needs to be further validated by prospective studies. Once validated,

the risk prediction models could lead to useful insights for clinical

decision making.

2 | MATERIALS AND METHODS

2.1 | Data processing and cohort characteristics

At the end of 2018, the VAERS database contained more than

400 000 vaccine-associated AE reports. Each report had been manu-

ally annotated at the preferred-term (PT) level in the Medical

KEY POINTS

• Spontaneous reporting system such as the US Vaccine

Adverse Event Reporting System (VAERS) contains mas-

sive records of adverse events (AEs) after vaccination,

which could be used to develop prediction model for

severe AEs.

• We identify highly associated AEs with GBS and develop

prediction models for GBS using 80 059 VAERS reports

following trivalent influenza vaccination (FLU3) between

1990 and 2017.

• Some AEs (e.g., pruritus, rash, injection site pain) are mild

and common, but negatively associated with GBS. They

are likely to be underreported when GBS occurs

simultaneously.

• After excluding the nine likely underreported AEs, the

final prediction AUC is 77.5% (90% CI: [75.5%, 79.6%]).

Paraesthesia and apnea, together with age (49–64) and

sex (male) are high-risk factors for GBS. The analysis is

independently validated using European influenza vac-

cine AEs data from EudraVigilance.

• The risk prediction model could help the reporter or

healthcare professionals to monitor the vaccine's condi-

tion and take early intervention when certain high-risk

early AEs are observed.
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Dictionary for Regulatory Activities (MedDRA) by domain experts.

According to the CDC, the VAERS reports had been screened to

remove duplicate reports.20 We extracted all of the VAERS reports

submitted after FLU3 vaccination from 1990 to 2017. The detailed

flow chart of the data processing and the analysis procedure was in

Figure 1. VAERS reports typically include more than one AE, with the

median number of AEs being 3, and 20% of reports contains only one

AE. After quality control (e.g., exclusion of reports with age < 0.5 or

missing age or sex, removal of AEs due to the investigation related

MedDRA terms), we obtained 80 059 reports and 2977 unique AEs

other than GBS. The total number of GBS-related reports was 1185.

Cohort characteristics, such as age, sex, and onset interval distribution

were displayed in Table 1. Additionally, we also processed the

European EudraVigilance data and used them for validation purpose.

The European data were obtained from European Medicines Agency

(EMA) at 2016 and included influenza vaccines AE reports from 2003

to 2016. We filtered out the reports where the occurrence was out-

side European area. 13 550 reports were extracted, of which

327 reports were GBS-related. Due to data access limitation, the

European data contained all the influenza vaccines.

2.2 | Association analysis and AE screening

We constructed a 2-by-2 table for each AE and measured its associa-

tion with GBS by the odds ratio (OR) and tested the significance by

Chi-squared test. To enhance the reproducibility of our findings, we

applied a conservative Bonferroni correction for multiple testing, with

the overall nominal significance level α = 0.05.

We screened the identified AEs for clinical interpretation and fur-

ther risk prediction. We first screened out extremely rare AEs with a

prevalence of less than 0.05%. After consultation with a neurologist,

we also screened out those AEs that are actually typical of GBS treat-

ments (as MedDRA also contains medical and health-related concepts

beyond AEs), very severe and typical GBS symptoms, or known to

happen after GBS treatment. The identified AEs were validated using

the European data by comparing their prevalence and ORs in both

data sets.

2.3 | Risk-prediction model

We built logistic regression models to predict the occurrence of GBS

after FLU3 vaccination, using age, sex and associated AEs. All models

were fit using the same set of training data (80% of all cohorts), and

performance was measured by the AUC21 value of predicting the

same set of testing data (20% of all cohorts). The first naïve model,

which included only age and sex, was presented for baseline compari-

son. The second model was fit using age, sex, and the identified AEs.

The second model may be questionable, as it involves the negatively

associated AEs which are more likely to be underreported when GBS

occurs and as a result, the association may be distorted. To obtain an

applicable predictive model, we further excluded this group of AEs

and used only the positively associated AEs, as well as sex and age, to

build the final model. The absolute risk of each factor and the AE com-

binations were also presented by refitting the final model using the

full US data. Similar prediction was also conducted in the European

data, using the same set of predictors as in the US data.

3 | RESULTS

3.1 | Descriptive analysis

The population characteristics in the extracted reports were summa-

rized in Table 1. Age was categorized into four groups: 0.5–17,

18–49, 50–64, and 65+ years. For the US population, the median age

was 50 years, with the interquartile range (IQR) from 29 to 66. Nearly

F IGURE 1 Flow chart of data process and analysis procedures [Colour figure can be viewed at wileyonlinelibrary.com]
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70% of the cohort was female. Most reports that were not related to

GBS had an onset time within 1 week, whereas more than 70% of the

reports that were GBS related had an onset time that exceeds 1 week.

This was consistent with results from Haber et al.22 To show how

multiple AEs were temporally ordered in one report, we manually

reviewed and annotated 15 US reports and presented them in

Figure S1 of the supporting information. The first six reports ended

with GBS as the last reported event. Compared to non-GBS reports,

GBS tends to occur later than non-GBS AEs, consistent with the path-

ophysiology of GBS. Most of the AEs were very rare. For example,

90% of the AEs were reported fewer than 90 times throughout the

28 year timeframe we examined.

TABLE 1 Characteristics of 80 059 US (VAERS FLU3,
1990–2017) reports and 13 550 European reports (all FLU
vaccination, 2003–2016)

Variable

GBS

related (%)

Not GBS

related (%)

US FLU3, 1990–2017

Total 1185 (100) 78 874 (100)

Female 563 (47.5) 55 257 (70.1)

Age of male, median (IQR) 60 (46–69) 46 (11–66)

0.5–17 29 (4.7) 6956 (29.5)

18–49 150 (24.1) 5749 (24.3)

50–64 206 (33.1) 4221 (17.9)

65+ 237 (38.1) 6691 (28.3)

Age of female, median (IQR) 56 (40.5–67) 51 (33–66)

0.5–17 33 (5.9) 6461 (11.7)

18–49 177 (31.4) 19 590 (35.5)

50–64 184 (32.7) 13 050 (23.6)

65+ 169 (30) 16 156 (29.2)

Onset interval of male (week)

1 143 (23) 19 724 (83.5)

2 166 (26.7) 937 (4)

3–4 133 (21.4) 429 (1.8)

5+ 153 (24.6) 596 (2.5)

NA 27 (4.3) 1931 (8.2)

Onset interval of female

(week)

1 174 (30.9) 48 709 (88.1)

2 131 (23.3) 1311 (2.4)

3–4 101 (17.9) 661 (1.2)

5+ 122 (21.7) 891 (1.6)

NA 35 (6.2) 3685 (6.7)

European all FLU, 2003–2016

Total 327 (100) 13 223 (100)

Female 136 (41.6) 7874 (59.5)

Age of male, median (IQR) 62 (52–73) 47 (15–66)

0.5–17 5 (2.6) 1518 (28.4)

18–49 34 (17.8) 1292 (24.2)

50–64 68 (35.6) 1041 (19.5)

65+ 84 (44) 1498 (28)

Age of female, median (IQR) 61 (48–72) 46 (27–64)

0.5–17 2 (1.5) 1315 (16.7)

18–49 37 (27.2) 2999 (38.1)

50–64 42 (30.9) 1685 (21.4)

65+ 55 (40.4) 1875 (23.8)

TABLE 2 Twenty-four GBS-associated adverse events identified
from the US data, and further validated in the European data

AE
(MedDRA PT)

US FLU3, 1990–2017
European all FLU,
2003–2016

Odds
ratio

Prevalence
(per 1000)

Odds
ratio

Prevalence
(per 1000)

Pyrexia 0.32 137.3 0.37 130.0

Injection site

erythema

0.01 124.9 0.10* 14.3

Injection site

pain

0.05 117.8 0.15 28.6

Injection site

swelling

0.03 85.1 0.13* 11.5

Pruritus 0.03 70.5 0.62* 21.7

Chills 0.26 67.7 0.65 34.3

Nausea 0.33 62.0 0.31 50.8

Urticaria 0.03 60.1 0.06 25.7

Rash 0.14 58.8 0.30* 24.6

Paraesthesia 11.24 37.1 8.07 39.7

Back pain 7.29 15.2 6.82 10.3

Dysphagia 6.40 7.9 11.84 8.7

Muscle spasms 2.18 7.3 2.65* 6.6

Hypertension 4.62 5.8 3.86 7.2

Urinary

incontinence

6.29 1.7 19.94 1.6

Apnea 14.81 1.6 2.37* 0.6

Urinary tract

infection

8.88 1.3 18.32 2.2

Depression 11.10 1.0 1.98* 5.5

Constipation 12.76 0.9 7.7 1.5

Hyperglycaemia 6.84 0.9 5.28* 0.9

Dysuria 7.13 0.7 5.78* 0.8

Urinary

retention

13.12 0.7 15.54 1.4

Diabetes

mellitus

8.85 0.6 1.49* 1.0

Fecal

incontinencea
10.47 0.6 23.72 1.0

a“Anal incontinence” as in the European data.

*p-value >0.05.
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F IGURE 2 A, ROC of GBS prediction in US VAERS FLU3, using logistic regression models. The full model uses age, sex, and the 24 AEs
(in blue); the naïve model uses only age and sex (in red); and the final model uses age, sex, and the 15 AEs, excluding the nine AEs that are
suspicious of underreporting (in green). B, Predicted absolute risk of all single AE and 2-AE combinations. If the combination is not observed in
the cohort, it is imputed by the fitted regression model with age, sex, and 15 associated AEs. C, Predicted absolute risk versus number of AEs
[Colour figure can be viewed at wileyonlinelibrary.com]
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3.2 | Association analysis and AE screening

We identified 83 AEs from the US data, among which 24 were kept

after further screened by clinical experts. The detail of the screening

procedure was deferred to the supporting information. The identified

AEs and the validation using the European data were listed in Table 2.

We evaluated the identified AEs in terms of their association with

GBS and prevalence among the VAERS FLU3 cohort. Nine AEs

(pyrexia, chills, nausea, pruritus, rash, urticaria, injection site pain,

injection site swelling and injection site erythema) were negatively

associated with GBS, and their prevalence was high. Thirteen AEs

(muscle spasms, hypertension, dysphagia, hyperglycaemia, diabetes

mellitus, dysuria, depression, apnea, fecal incontinence, constipation,

urinary incontinence, dysuria, urinary tract infection and urinary reten-

tion) were positively associated with GBS, but their prevalence was low

(<1%). Back pain and paraesthesia were two AEs that were both posi-

tively associated with GBS and have a relatively high prevalence. Inter-

estingly, the associations and prevalence of these AEs in the US data

are highly consistent with those in the European data. Specifically, the

same nine AEs were also negatively associated with GBS and have rela-

tively high prevalence in the European data. The remaining 15 AEs

were also positively associated with GBS in the European data.

As noted above, the nine AEs that are negatively related to GBS

are more common and mild and thus more likely to be underreported,

especially when a severe AE such as GBS occurs. This underreporting

could alter the direction of their association with GBS and make the

prediction not applicable. In contrast, for the other 15 AEs that are

less common and mild, the bias is expected to be relatively small.

3.3 | Predictive modeling

Figure 2A shows the ROC curves of GBS prediction using three nested

models with different predictors in the US data. As a benchmark, the

naïve model that contains only age and sex results in an AUC of 68.5%

(90% CI: [65.7%, 71.2%]). The full model using age, sex, and all 24 AEs,

including the possibly underreported 9 AEs, achieves an AUC of 85.4%

(90% CI: [83.8%, 86.9%]). The final model, which excludes the possibly

underreported nine AEs, achieves an AUC of 77.5% (90% CI: [75.5%,

79.6%]). As an independent validation, the values of AUC are 69.7%

(90% CI: [66.0%, 74.4%]), 78.5% (90% CI: [74.9%, 83.7%]), and 75.7%

(90% CI: [71.7%, 81.1%]) respectively for the naïve model, the full

model and the final model in the European data.

The final model was fit again using all of the US data, and the risk

ratios are listed in Table S1. Paraesthesia (OR = 9.93, 95% CI = 8.60–

11.46) and apnea (OR = 11.72, 95% CI = 6.88–19.94) are high-risk

factors for GBS. Age (49–64) and sex (male) are also high-risk factors

for GBS. The predicted absolute risk is presented in Figure 2B,C. The

absolute risk of all single AEs and combinations of two AEs are plotted

in Figure 2B. Even for only two AEs together, the absolute risk can be

as high as 30% and above. For example, the combination of apnea and

paraesthesia has a predictive risk of 66%. This combination consists of

seven subjects, of which four report GBS. Since usually only a few of

the identified AEs are reported, this combination table can be used as

a quick reference tool for identifying the risk of GBS when certain

AEs are observed. We plot the absolute risk versus the number of AEs

in Figure 2C, where 201 (0.25%) reports were predicted as of high risk

of GBS (e.g., risk > 25%) and 84 actually developed GBS, the PPV is

thus 41.8%.

4 | DISCUSSION

Vaccination is one of the most successful public health interventions

ever implemented. It is important to study vaccine safety issues in

order to maintain high levels of public trust in vaccines, and thereby

mitigate vaccine hesitation. In this paper, we developed a risk-

prediction model for GBS using associated AEs identified from VAERS

data. To the best of our knowledge, this approach is the first attempt

to utilize VAERS data for risk prediction. We demonstrate the poten-

tial to develop a GBS “alarm signal” based solely on reported VAERS

AEs. The application of the prediction model can be valuable for per-

sons receiving a FLU3 vaccination, for clinicians as a means to under-

stand the likelihood of developing GBS, for regulators or companies

to detect a signal of GBS early in the use of a vaccine, and for scien-

tists who seek to understand mechanisms for GBS.

The purpose of this study was to determine whether certain AEs

are associated with GBS, rather than the association of GBS with

influenza vaccination. Our study thus differed from existing signal

detection studies that use VAERS data,23 as our investigation focused

on the study population captured by VAERS rather than the entire

vaccinated population. The identified signals were validated by an

independent European vaccine self-reporting system data, where all

the identified AEs had the same directions of associations with GBS,

compared to the identified associations in the US data. We demon-

strated the feasibility of using early AEs for the prediction of GBS, and

the risk-prediction models achieved an AUC improvement of 16.9%

by including the 24 AEs, or 9.0% by including the 15 AEs, compared

to a naïve baseline prediction model with age and sex only. With the

cutoff probability at 25%, the final model including the 15 AEs

predicted 201 reports as of high risk of GBS, and 84 actually devel-

oped GBS. Considering the rareness of GBS reported after vaccina-

tion, the positive predicted value (41.8%) is good. It is worth noting

that the possible underreporting of these excluded nine AEs was

observed in both the US and the European data. We believe excluding

them avoids the use of AEs with unknown association to GBS and

makes the risk-prediction more interpretable and feasible.

The data-driven association analysis identifies AEs that can moti-

vate further etiology studies, after excluding those AEs with established

GBS causality. The nine AEs that are negatively associated with GBS

are of the highest prevalence. They are mild and more likely to occur

shortly after vaccination. A possible explanation is that either they are

protective for GBS or they are subject to underreporting, especially

when GBS happens. Although the underreporting pattern is likely the

case,6 we cannot rule out the possibility of a protective effect. On the

other hand, some of the 15 identified AEs that are positively associated
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with GBS, have been reported to be related to GBS during its early

stage in the literature. For example, paraesthesia may be an initial pre-

senting symptom, and bilateral facial weakness with paraesthesias is

typically involved in GBS.24 In addition, autonomic dysfunction, includ-

ing hypertension and urinary retention, can be a presenting sign of GBS

in children,25 and urinary incontinence should be included in prognostic

models for GBS.17 Some of the identified AEs are likely to be pre-

existing conditions, which are also useful for predicting GBS. For exam-

ple, Kaplan et al. suggest that diabetes mellitus exacerbates the clinical

and electrophysiological features of GBS and influences long-term dis-

ability.16 Besides, it's well known that the depression, hyperglycaemia

and diabetes mellitus may also relate to immunological abnormality.

The findings from our investigation have potential to impact clini-

cal practices. For example, early treatment of GBS is critical in

preventing severe outcomes, such as quadriplegia and respiratory fail-

ure. The signals identified by our investigation warrants further inde-

pendent investigations by other investigators. Once validated, these

findings could potentially lead clinicians to advise influenza vaccines

to be on the look-out for paraesthesias and apnea, for instance. In

addition, these findings might be useful is in more accurately

pinpointing the timing of onset of symptoms in vaccine safety studies,

which is important in determining whether an association with vacci-

nation exists. If some of the associated AEs are true symptoms of a

case of GBS-in-development, then clinician-adjudicators of GBS cases

in vaccine safety studies could use those symptoms to more accu-

rately determine the timing of GBS symptom onset instead of using

limb weakness, which might develop later. From biomedical informat-

ics point of view, the proposed prediction model, after further valida-

tion and evaluation, could be implemented in the VAERS system in

order to alert for high risk patients with potential severe AEs that

have not yet occur. Though we do not have the temporal information

of the AEs in VAERS, the prediction based on the identified AEs are

still useful, as many of the AEs either happen likely soon after Flu3

vaccination, or are preexisting conditions (e.g., diabetes mellitus).

There are some limitations of our investigation. As spontaneous

reporting systems, VAERS, as well as the European EudraVigilance

system, both accept reports submitted without validation. Reporting

varies over time and is subject to population shift and possible public-

ity stimulation. In VAERS, the number of annual reports shows a clear

increasing trend from the 1990s, with a peak in 2010. This is possibly

due to the broader public awareness of vaccine safety and the accep-

tance of VAERS, or it could be connected to the flu pandemic from

early 2009 to 2010. Regarding GBS occurrence within VAERS after

FLU3 vaccination, the prevalence of GBS in earlier years (e.g., 1990s)

is relatively high (~5%) and become steadily lower in the 2010s (~1%).

This could be another example of reporting bias: compared to earlier

years, people are more willing to report non-severe AEs due to greater

awareness and accessibility of VAERS online submission. In addition,

as many AEs are sparse in the annual data, we chose to use data

across all years in the association analysis and predictive models. As a

result, the approach assumed there was no temporal trend of the

association. Another result of the low prevalence of GBS reports

(1.5%) is, due to the trade-off between sensitivity and PPV, it is diffi-

cult to reach good values of both of them. In our prediction, we set

the predicted probability of GBS above 25% as high risk, this results in

a PPV of 41.8% (84/201), but a low sensitivity of 7.1% (84/1185). If

we use cut-off 10% for high risk, the PPV is 19.6% (250/1274) and

the sensitivity is 21.1% (250/1185).

A key issue in risk prediction is the temporal order between the

predictor AEs and the outcome GBS, that is, the AEs need to happen

before GBS to be valid for prediction. However, manual chart review

and annotation for temporal information using VAERS reports at large

scale are challenging as most temporal information related to GBS

progression are stored in unstructured narrative symptom texts.

Based on our investigation of a small subset of reports through man-

ual chart review (see Figure S1 in the supporting information), as well

as the literature,13,22 the onset time of GBS is likely to be later than

the AEs we identified as predictors. In addition, the screening criteria

we used, i.e. screening out those typical GBS treatments and those

severe and typical GBS-caused symptoms partially alleviate the con-

cerns on the lack of temporal information in the data. Finally, the pre-

diction model is only valid within the VAERS FLU3 cohort (or other

spontaneous reporting system such as EudraVigilance), and cannot be

directly generalized outside this population.

Our results provide many directions for future research. Similar

analysis can be conducted for the VAERS FLU4 population and it

would be of interest to investigate the difference between the two

major influenza vaccines in use, and the risk of GBS. To generalize the

approach to the general population or other vaccine monitoring sys-

tems, data integration of multiple sources of pharmacovigilance data

is required. For example, this investigation can be further validated

and evaluated by other data sources, such as the Vaccine Safety

Datalink (VSD),26 or the active surveillance system SENTINEL. Further

studies that use temporal information and more sophisticated

methods are needed. A customized natural language processing tech-

nique (e.g., CLAMP27) could be used to extract the exact onset time

information for each individual AE (assuming such information is

included in the VAERS reports) in order to develop a more reliable

model. Such research is important to further develop risk-based pre-

dictive models of important vaccine-associated AEs.
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